

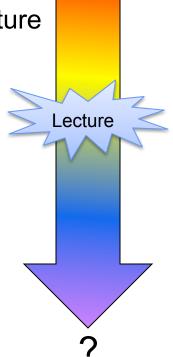
Before, in, and after lecture

James (J.T.) Laverty Michigan State University April 16, 2012

Slides borrowed from: Gerd Kortemeyer

What makes a good use of technology in education?

Must be integrated into the educational experience!


- supporting the goals
 - not technology for technology sake
- not scattered "technology highlights"
 - consistently applied
 - students know what to expect and what is expected
- moving into the background
 - not wizz-bang or gimmicky
- increasing effective time on task
 - make the students interact with the materials
 - do not waste student time
- Giving effective and timely feedback to learners and instructors: assessment

Assessment

- Assessment: Feedback to learners and instructors
- Formative assessment:
 - Students can keep track of their own learning
 - Students do not fall behind
 - Instructors keep track of their students' learning
 - can adapt the teaching to the learning
- Summative assessment: exams
 - Technology allows for frequent exams

Assessment

- Pre-Class Questions
 - Students being prepared for lecture
 - Just-In-Time Teaching
- In-Class Questions
 - Clickers
- Post-Class Questions
 - Homework
 - Online Discussions, Helprooms
 - Exams
- Does this even work?
- How is this realistically possible?
 - That's where course and learning content management come in!

Pre-Class Questions

Students being prepared for lecture Just-In-Time Teaching

Gerd Kortemeye	<u>r</u> (No Role,	Cumulative	Privileges)	
Main Menu				

Menu » User Roles

Show all roles (Update display)

	User Role	Extent	Start	End				
	Construction Space							
Select	Author	Domain: nds Server: vita.sonia.de	Tue May 11 12:13:40 am 2010 (CEST)					
		Course						
Select	Course Coordinator	r Your Test Course <u>Syllabus</u> Domain:nds						
Select	Student	LB271, Fall 2008 - Intro Calculus-Based Physics I $\underline{\mbox{Syllabus}}$ Section: guest	Sun Aug 24 06:00:00 am 2008 (CEST)	Tue Dec 14 05:59:59 am 2010 (CET)				
	specified			Currently selected.				

🖳 Messages Roles Help Logout

Pre-Class Questions

 Easy questions embedded into content

Due
 before
 lecture

📄 Time-Varying Currents Materials					
Introduction					
RC Circuit					
RC Circuit Example					
Applet: RC Circuit with Battery					
RL Circuit with Battery					
RL Circuit with Battery Example					
LC Circuit					
LC Circuit with Battery Example	9				
LC Circuit Time Evolution					
LC Time Evolution Example					
OC RCL Circuit					
? DC Circuit Basics	9	×		Answer av	ailable
Alternating Currents and Voltages					
Applet: Oscilloscope					
AC Power Dissipation in a Resistor					
AC Power Dissipation Example					
? RMS Current, Voltage, and Power	9	×		Answer av	vailable
Inductance in an AC Circuit					
Inductance in AC Circuit Example					
? RL-Circuits		×		Answer av	ailable
Capacitor in an AC Circuit					

Pre-Class Questions

- Make sure students read materials
- Questions can be answered just based on the readings
- Students come prepared

Which of the following statements are true?

False: In a circuit consisting of an AC voltage source and a resistor, the dissipated power is proportional to the current. **True:** In a circuit consisting of an AC voltage source and a resistor, the voltage drop across the resistor and the voltage source are in phase.

True: The rms-voltage is proportional to the maximum AC-voltage.

True: In a circuit with a capacitor and inductance in series (no resistance), if the capacitor is initially charged, an un-damped harmonic oscillation takes place.

Computer's answer now shown above. Tries 0/6

Just-In-Time

Adapt lecture to student difficulties

When I looked at your homework this morning, I saw that all of you have understood quantum field theory, but many of you still have problems with long division. So this morning, we will ...

Just-In-Time

Course Action Items

Resource

Applet: Electron Orbit

Canacitance of a Sphere

Gerd Kortemeyer Course Coordinator LBS 272 - Spring 2006

What's New?

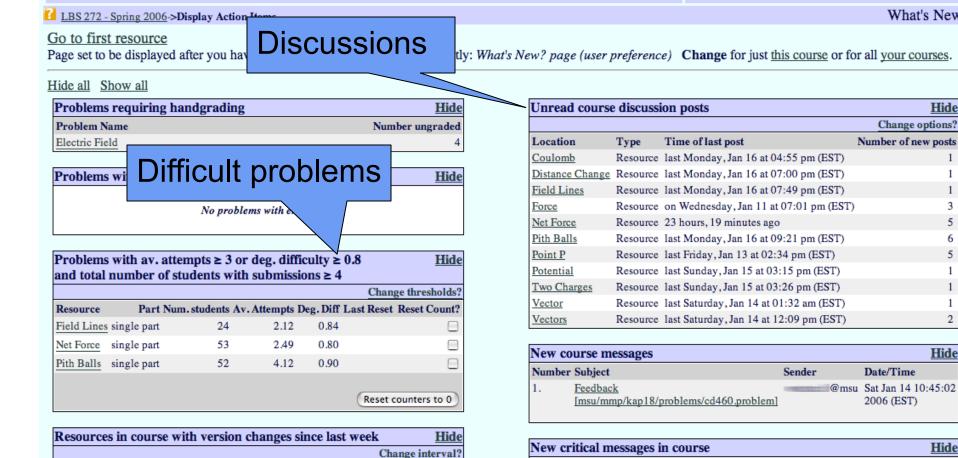
Change options?

Hide

3

5

6 5


1

1

1

2

Hide

Version

used

10

0

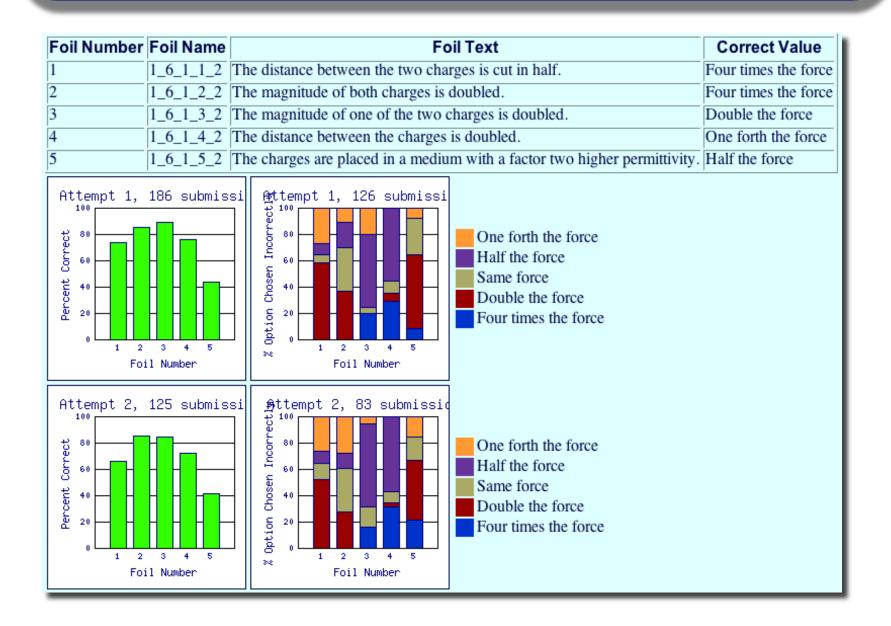
New

10

version

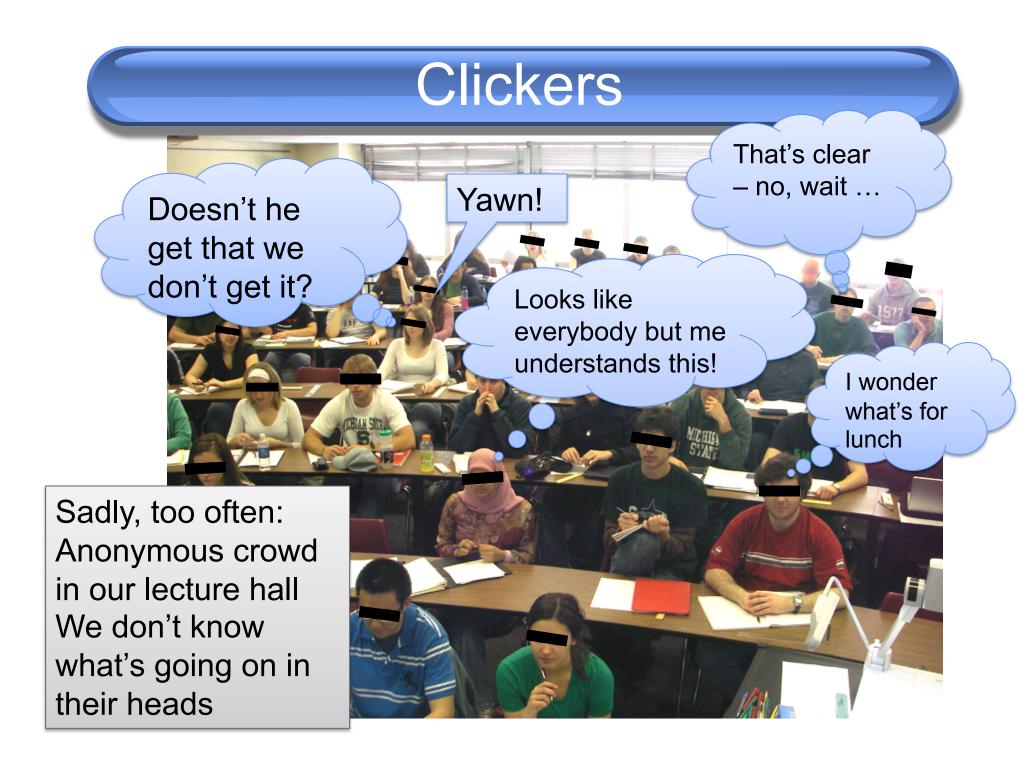
Last revised

(EST)


Fri Jan 13 10:18:52 2006

Mon Jan 16 12:03:13 2006

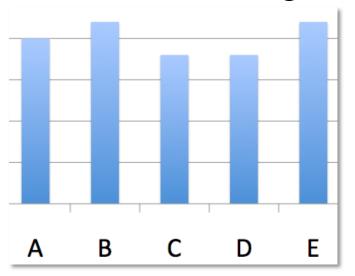
Hide

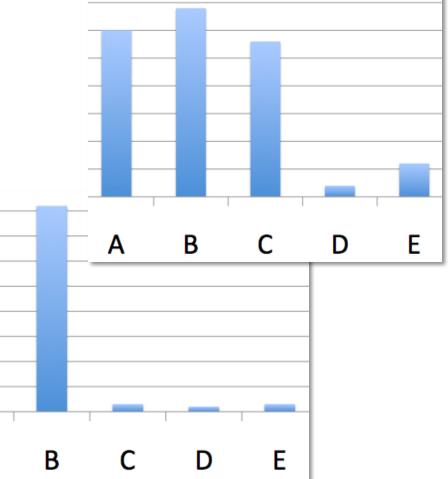

No unread critical messages in course

Just-In-Time

In-Class Questions

Clickers


- RF devices
- One per student
- Students can answer questions during lecture



Α

Lecture progress depends on voting outcome

- Explain again
- Go on
- Let students discuss and vote again —

Peer-Instruction

- Students can sometimes explain concepts better than us to their peers
 - We have forgotten what we initially struggled with
- Students learn while explaining

• Students register in LON-CAPA

000		LON-CAPA Change P	references		\bigcirc				
∲ • <u></u>)• (2 😢 🏠	Lhttp://phy1.lbs.msu.ed	u/adm/p 🔻 🕨 🤇	G • Google	۵ 🐇				
Getting Started	Getting Started Latest Headlines 🔊								
LON-CAPA	LON-CAPA Course Statistics an 🛞 🖳 LON-CAPA Change Preferences 🛞								
Main Men	<u>u</u>	Launch Remote Control		Roles	Help Exit				
Change	Prefere	nces	No		e Kortemeyer tive Privileges				
Menu->Set User	Preferences->	Register Clicker		Change P	references				
Enter response 005BC59E		er") numbers							
	Register								

Give credit for correct and for incorrect

answers 🖳 Main Menu Return to Last Location

Navigate Contents

Grading (msu_8p96131ebae7b47b8msul1 ss08lbs272)

Current Resource: Mon, Mar 10th

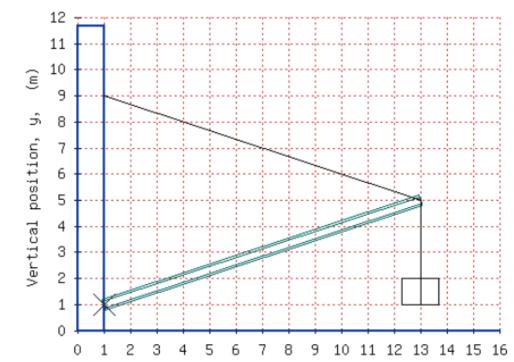
Part: 0 score Type: numerical

Specify a file containing the clicker information for this resource.
Choose File MonMar10thA.csv
Type: i>clicker 🛟
Award points just for participation
 Correctness determined from response by course personnel
Correctness determined from response with clicker ID(s)
Percentage points for correct solution: 100
Percentage points for incorrect solution: 60
Upload File

• Embedded in course, alongside slides

Homework		
Recitation Grades		
Clicker Slides and Grades		
Mathematical Pre-Course, Part 1		
? Mathematical Pre-Course, Part 1	\rightarrow	Open, no due date
Mathematical Pre-Course, Part 2		
? Mathematical Pre-Course, Part 2	\rightarrow	Open, no due date
Units and Dimensions, Part 1		
? Units and Dimensions, Part 1	\rightarrow	Open, no due date
Units and Dimensions, Part 2, and Kinematics, Part 1		
? Units and Dimensions, Part 2, and Kinematics, Part 1	\rightarrow	Open, no due date
Kinematics, Part 2		
? Kinematics, Part 2	\rightarrow	Open, no due date
Kinematics Part 3		

Currently under Development


- Currently: uploading of session data
- Work-in-progress: running session out of LON-CAPA
 LON-CAPA
- Questions
 from shared
 content
 library
 (more later)
- Menü anzeigen
- Item statistics

Post-Class Questions

Homework Helprooms Exams

More sophisticated highly randomizing problems

A crate with a mass of 155.5 kg is suspended from the end of a uniform boom with mass of 89.5 kg. The upper end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. Calculate the tension in the cable.

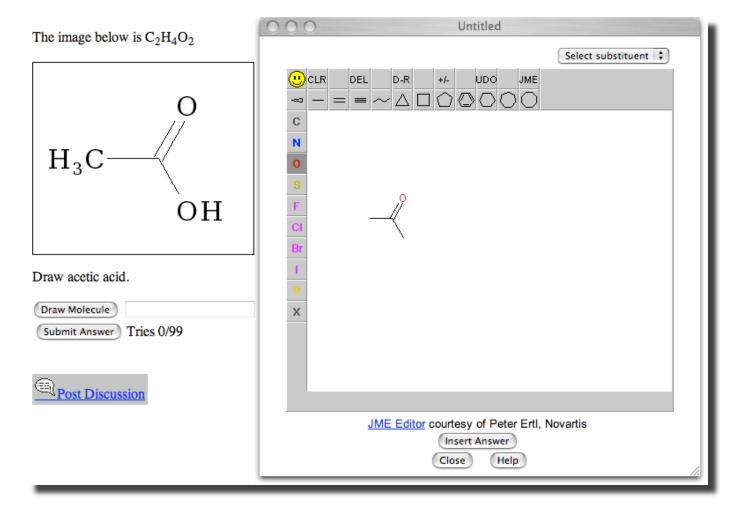
- ...special emphasis on math
 - Including support of
 - LaTeX
 - Maxima
 - R

Give an example of a function

1. which is orthogonal to $6 \cdot \cos(7 \cdot x) - 2 \cdot \sin(2 \cdot x)$ with respect to the scalar product

$$\langle g \mid h \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} dx g(x) \cdot h(x)$$

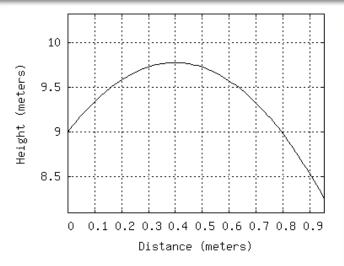
2. whose norm is 1.


 $\cos(2x) + \sin(7x)$

The function you have provided does not have a norm of one.

Submit Answer Incorrect. Tries 1

What is the derivative of $\begin{pmatrix}
4 & t^3 \\
8 & t^8
\end{pmatrix}$ with respect to t? $4t^{2,8t^7}$ You need to multiply with the original exponent. Submit Answer Incorrect. Tries 1


• ... chemistry ...

... physical units ...

Elevator Problem Due never An elevator (cabin mass 500 kg) is designed for a maximum load of 2600 kg, and to reach a velocity of 3 m/s in 5 s. For Tension this scenario, what is the tension the elevator rope has to withstand? 32270 kg*m/s^2 Submit Answer Tries 0/99

Online Discussions

Discussions

Encouraged, since all students have different versions. Again: Peer-Instruction. The plot shows the trajectory (height versus distance) of an object launched at an angle of 75.6 degrees. What was the initial speed of the object? **4.0 m/s** Computer's answer now shown above. Tries 0/12

Threaded View Chronological View Sorting/Filtering options Export?

Anonymous 1 (Fri Sep 22 01:26:29 2006 (EDT))

any hints to start?

Re: Anonymous 2 (Fri Sep 22 01:56:48 2006 (EDT))

You need to find the Y component of velocity... you can do this by finding the height traveled (notice it does not start on the ground) and combining that with acceleration in a kinematics equation. From there use trig to get the original velocity.

Re: Re: Anonymous 1 (Fri Sep 22 12:10:37 2006 (EDT))

how can we find the height traveled and how can we get the acceleration if we don't have the time?

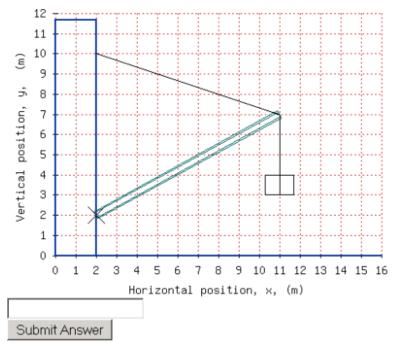
Anonymous 3 (Fri Sep 22 16:41:27 2006 (EDT))

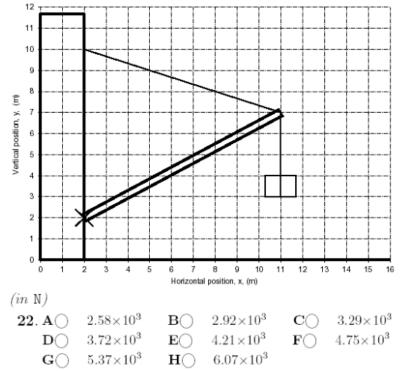
i'm lost on this one ... can anyone help?

Re: Anonymous 4 (Fri Sep 22 20:02:45 2006 (EDT))

Use the squared kinematics equation - so $Vf^2 = Vi^2 + 2a$ (Xf-Xi).

Helprooms

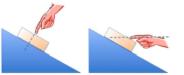

 Staffed with Learning Assistants in the evenings


Collaborative learning space, peer instruction

- Problems can also be rendered for bubble sheets
- Each student has a different exam

A crate with a mass of 177.5 kg is suspended from the end of a uniform boom with mass of 88.5 kg. The upper end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. Calculate the tension in the cable.

1 pt A crate with a mass of 177.5 kg is suspended from the end of a uniform boom with mass of 88.5 kg. The upper end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. Calculate the tension in the cable.



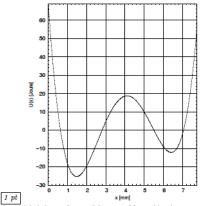
CODE - AACHDA LB 271 - Introductory Physics Lecture Version A

Name

LB271 Fall 2009 Final Exam Version A

Gravitational Accellera- tion on Earth	$g = 9.81 m/s^2$
Gravitational Constant	$G = 6.67 \cdot 10^{-11} m^3 / (kg \cdot s^2)$
Absolute Zero	-273.15°C
Gas Constant	$R = 8.31 J/(K \cdot mol)$
Boltzmann Constant	$k = 1.38 \cdot 10^{-23} J/K$
Avogadro's number	$N_A = 6.02 \cdot 10^{23}$ parti- cles/mol
Specific heat of water va- por	$c_{vapor} = 0.48kcal/(kg \cdot K)$
Specific heat of liquid wa- ter	$c_{water} = 1kcal/(kg \cdot K)$ = 4186J/(kg · K)
Specific heat of water ice	$c_{ice} = 0.5 k cal/(kg \cdot K)$
Latent heat of fusion for water	$L_{f} = 80 k cal/kg$
Latent heat of vaporiza- tionfor water	$L_V = 540 kcal/kg$

A block is being held in place on an incline. The magnitude of the force applied by the hand on the block is the same in the left and the right scenarios.


1 pt In which scenario does the incline exert a lower normal force on the block?

B() The right scenario. C Same in both scenarios.

1 pt In which scenario does the incline exert a lower frictional force on the block?

2. A O The left scenario. B) The right scenario. C() Same in both scenarios.

1 pt By how many decibels does the sound intensity from a point source decrease if you increase the distance to it by a factor 6? 3A() 12.2 B() 13.8 C() 15.6 D() 17.6 EO 19.9 FO 22.5 GO 25.4 HO 28.7

A particle is located at x=2.0 mm and has a kinetic energy of 29.5 Joule. What is the maximum x-coordinate the particle could reach? (in mm)

4.A() 0.1 B() 0.7 C() 1.6 D() 2.6 EO 3.2 FO 4.7 GO 5.3 HO 7.6

Deep Space Nine sees Enterprise and a shuttle approach from exactly opposite directions with 0.8 c and 0.5 c, respectively. 1 pt At what fraction of the speed of light (β) does Enterprise see the shuttle approach?

 $\textbf{5.A} \bigcirc \ 0.00 \quad \textbf{B} \bigcirc \ 0.50 \quad \textbf{C} \bigcirc \ 0.83 \quad \textbf{D} \bigcirc \ 0.91$ E() 0.93 F() 1.00 G() 1.25 H() 1.30

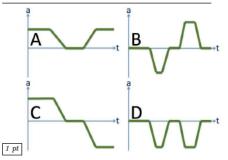
 $1 \ pt$ The shuttle has a length of 9 meters when at rest. How long is it in the system of Deep Space 9? (in m) 6.A 1.8 B 2.6 C 3.7 D 5.4 EO 7.8 FO 11.3 GO 16.4 HO 23.8

1 pt Captain Picard on the Enterprise takes a 49 minute tea break. How long is this break in the system of Deep Space

7.A 27 B 33 C 42 D 52 E() 65 F() 82 G() 102 H() 128

9? (in min)

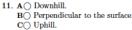
CODE - AACHDA LB 271 - Introductory Physics Lecture Version A


1 pt You have two organ pipes of the same length, one closed at both ends, one half open. Which one has a lower fundamental frequency?

- 8. A O The closed pipe.
- B() Same.
- C() The half-open pipe.

1 pt In a very simple model of the lower atmosphere, air has a constant density of 1.26 kg/m³. How much would the air pressure change over a height difference of 130 m? (in Pa)

9.A○ 986 **B**○ 1110 **C**○ 1260 **D**○ 1420 E() 1610 F() 1820 G() 2050 H() 2320



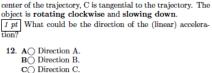
A car drives in the forward (positive) direction. It first has a constant speed, then drives into a parking spot, waits for a few moments, and then drives out again backwards. Which one of the acceleration graphs could describe this scenario?

- 10. A O Scenario A
- B Scenario B CO Scenario C
- D_O Scenario D
- EO None of the above.

1 pt A box is sliding uphill as shown. What is the

direction of the frictional force on the box?

 \mathbf{D} None of the above.



mass, same shape, same size). However, one is

have the larger angular acceleration?

14. A Same B ∩ The solid spool CO The hollow spool

trajectory as shown. The indicated direction A is toward the

An object is rotating on a circular

C Direction C. DO Into the paper.

A4

E() Out of the paper.

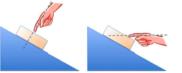
1 pt What could be the direction of the angular acceleration

13. A Direction A. BO Direction B. C Direction C. D) Into the paper.

1 pt

tion?

EO Out of the paper. You have two identical looking spools (same


hollow, made from iron, the other is solid, made from aluminum. A string is wound around each spool. If you pull on both strings with equal forces, which spool is going to

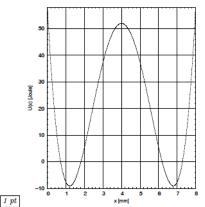
CODE - AAFIHH LB 271 - Introductory Physics Lecture Version A

Name:

LB271 Fall 2009 Final Exam Version A

Gravitational Accellera- tion on Earth	$g = 9.81 m/s^2$
Gravitational Constant	$G = 6.67 \cdot 10^{-11} m^3 / (kg \cdot s^2)$
Absolute Zero	-273.15°C
Gas Constant	$R = 8.31 J/(K \cdot mol)$
Boltzmann Constant	$k = 1.38 \cdot 10^{-23} J/K$
Avogadro's number	$N_A = 6.02 \cdot 10^{23}$ parti- cles/mol
Specific heat of water va- por	$c_{vapor} = 0.48 kcal/(kg \cdot K)$
Specific heat of liquid wa- ter	$c_{water} = 1kcal/(kg \cdot K)$ = 4186J/(kg · K)
Specific heat of water ice	$c_{ice} = 0.5 k cal/(kg \cdot K)$
Latent heat of fusion for water	$L_{\rm f} = 80 k cal/kg$
Latent heat of vaporiza- tionfor water	$L_V = 540 kcal/kg$

A block is being held in place on an incline. The magnitude of the force applied by the hand on the block is the same in the left and the right scenarios.


1 pt In which scenario does the incline exert a higher frictional force on the block?

1. A O The left scenario. B() The right scenario. CO Same in both scenarios.

1 pt In which scenario does the incline exert a higher normal force on the block?

 A
BO The right scenario.
CO Same in both scenarios

1 pt By how many decibels does the sound intensity from a point source decrease if you increase the distance to it by a factor 6? 3A() 7.10 B() 8.31 C() 9.72 D() 11.4 EO 13.3 FO 15.6 GO 18.2 HO 21.3

A particle is located at x=5.5 mm and has a kinetic energy of 9.8 Joule. What is the minimum x-coordinate the particle could reach? (in mm)

4.A 1.6 B 2.6 C 2.7 D 2.9 E() 3.0 F() 3.8 G() 5.2 H() 6.9

5.

Deep Space Nine sees Enterprise and a shuttle approach from exactly opposite directions with 0.8 c and 0.4 c, respectively. 1 pt At what fraction of the speed of light (β) does Enterprise see the shuttle approach?

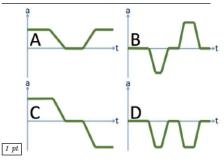
AO	0.00	B〇	0.47	C() 0.50) D ()	0.59
EO	0.78	FO	0.91	G () 1.00) HO	1.20

1 pt The shuttle has a length of 12 meters when at rest. How long is it in the system of Deep Space 9? (in m) 6.A() 3.6 B() 4.5 C() 5.6 D() 7.0 E() 8.8 F() 11.0 G() 13.7 H() 17.2

1 pt Captain Picard on the Enterprise takes a 35 minute tea break. How long is this break in the system of Deep Space 9? (in min)

7.A() 19 B() 28 C() 40 D() 58 E() 85 F() 123 G() 178 H() 258

CODE - AAFIHH LB 271 - Introductory Physics Lecture Version A


1 pt You have two organ pipes of the same length, one closed at both ends, one half open. Which one has a lower fundamental frequency?

- 8. A () Same.
- B() The closed pipe.

C() The half-open pipe.

1 pt In a very simple model of the lower atmosphere, air has a constant density of 1.22 kg/m³. How much would the air pressure change over a height difference of 110 m? (in Pa) **9A** \bigcirc 1320 **B** \bigcirc 1490 **C** \bigcirc 1680 **D** \bigcirc 1900

E() 2150 F() 2430 G() 2740 H() 3100

A car drives in the forward (positive) direction. It first has a constant speed, then drives into a parking spot, waits for a few moments, and then drives out again backwards. Which one of the acceleration graphs could describe this scenario?

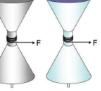
- 10. A O Scenario A
- B() Scenario B CO Scenario C
- D Scenario D
- E() None of the above.

1 pt A box is sliding uphill as shown. What is the direction of the frictional force on the box?

11. A Perpendicular to the surface.

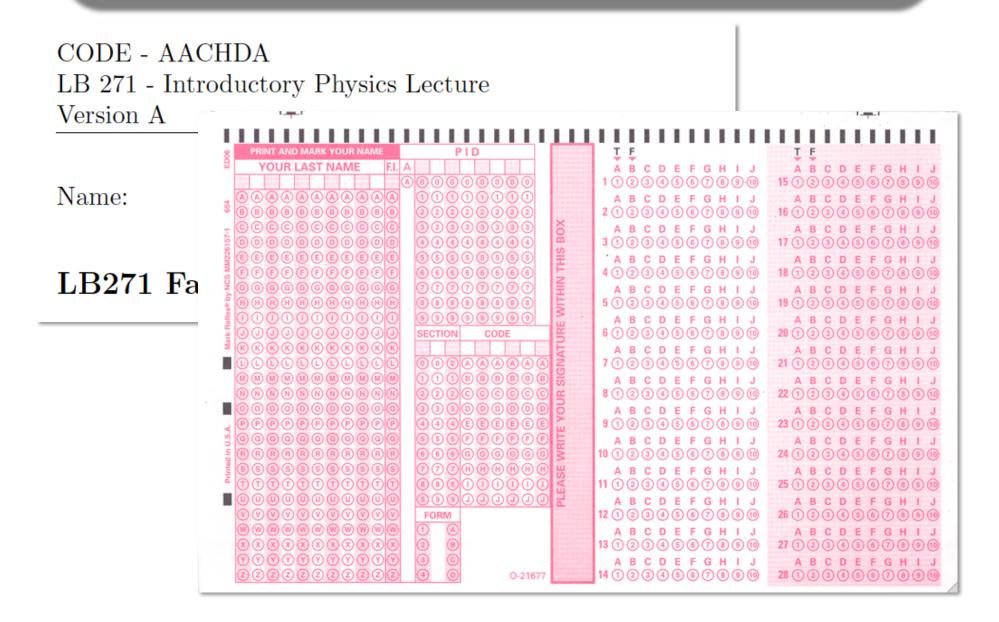
- BO Downhill.
- CO Uphill.
- $\mathbf{D} \bigcirc$ None of the above.

An object is rotating on a circular trajectory as shown. The indicated direction A is toward the center of the trajectory, C is tangential to the trajectory. The object is rotating clockwise and slowing down. 1 pt What could be the direction of the (linear) acceleration


- 12. A ODirection A. **B** Direction B. C() Direction C.
 - D() Into the paper.
 - E() Out of the paper.

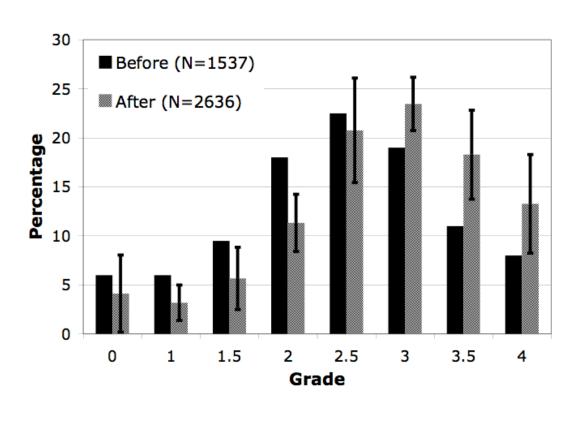
1 pt What could be the direction of the angular accelera-


13. A ODirection A. BO Direction B. CO Direction C. DO Into the paper. EO Out of the paper.

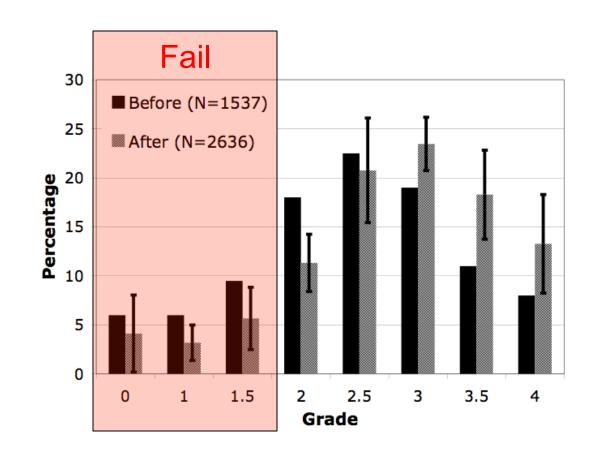

1 pt

cal looking spools (same mass, same shape, same size). However, one is hollow, made from iron, the other is solid, made from aluminum. A string is wound around each spool. If you pull on both strings with equal forces. which spool is going to have the larger angular acceleration?

14. A The solid spool BO The hollow spool C() Same



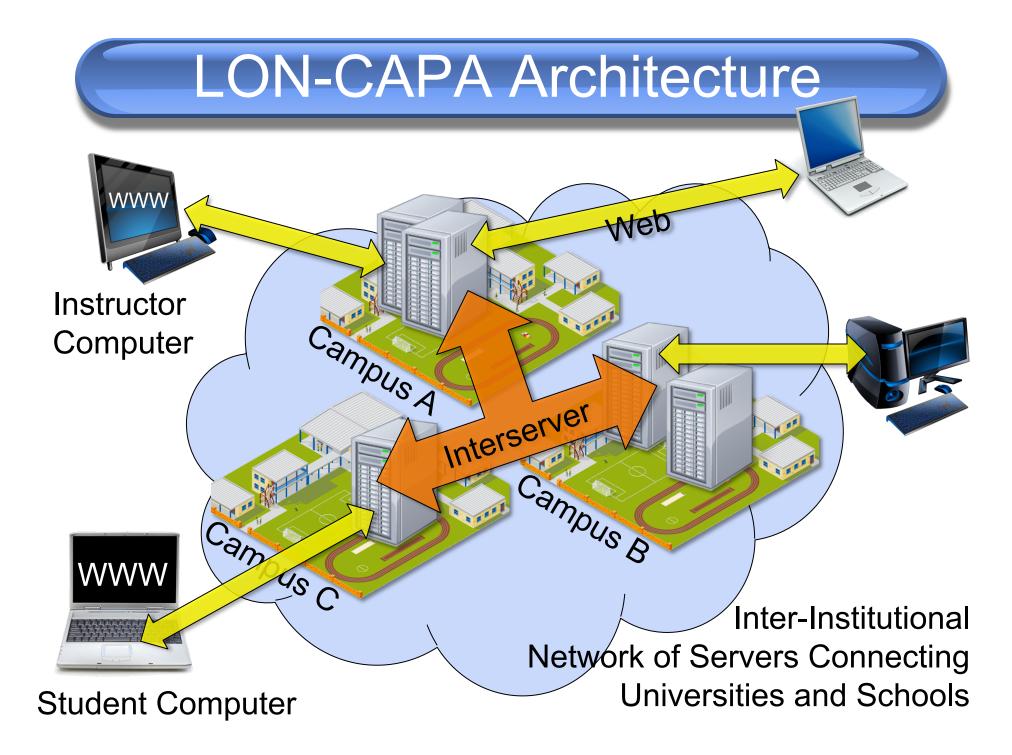
... does this even work?

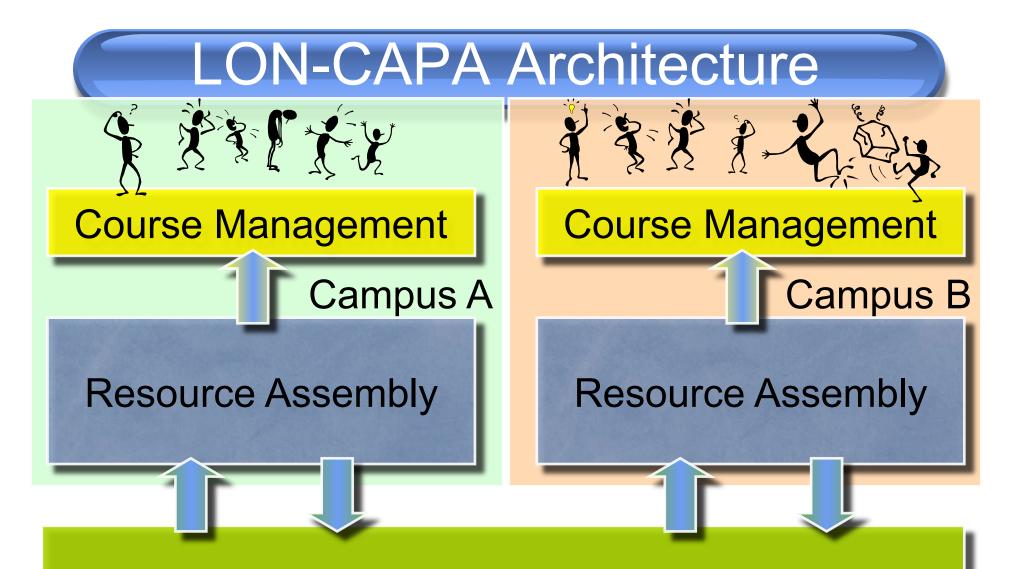

Learning Success

Intro Physics for Scientists and Engineers
Grades in years before and after online homework

Learning Success

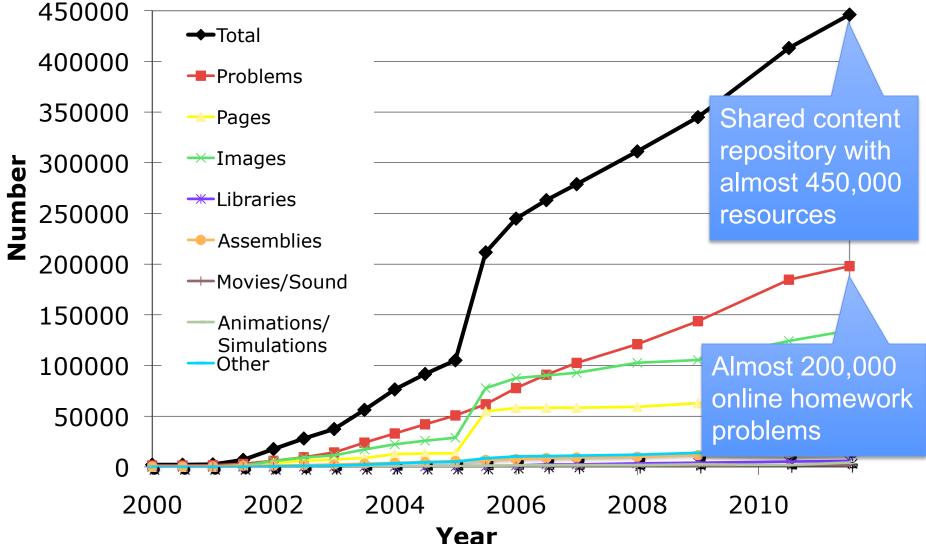
Mostly helps students who are on the brink of failing the course.

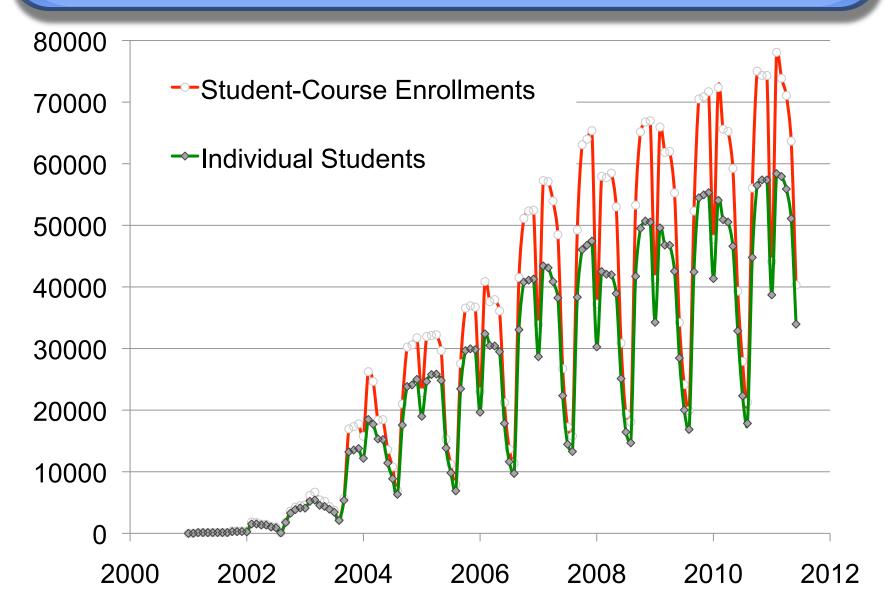




Sharing of Resources

- Creating online resources is a lot of work
- Doing so for use in just one course is a waste of time and effort
- Many resources could be used among a number of courses and across institutions




Shared Cross-Institutional Resource Library

The LON-CAPA Community

LON-CAPA Shared Resource Pool, Summer 2011

LON-CAPA Enrollment

WIP: Recommender

Initializing ... Resource data ... Associations ... Basket Associations ... Taxonomies ...

accounting:(639) advertising:(2043) astronomy:(5981) biochemistry:(2194) biology:(49872) botany:(88751) chemistry:(35725) computerscience:(1199) design:(450) ecology:(1708) engineering:(2180) finance:(1568) geology:(2388) geometry:(546) history:(263) languages:(13) mathematics:(11868) medicine:(5067) nursing:(8) nutrition:(594) philosophy:(10) physics:(112158) psychology:(527) statistics:(3084) zoology:(218)

Search:

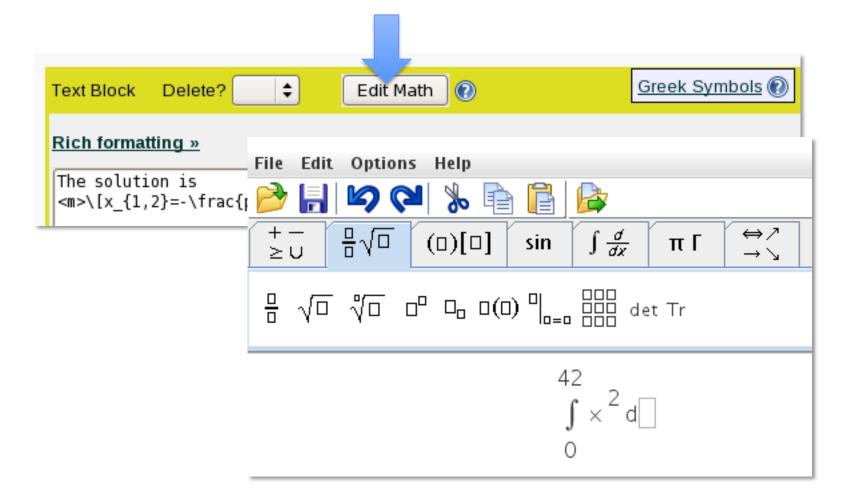
Current Basket

/res/msu/plough/physlibrary/momentum/elhs-probl1.problem Remove /res/msu/physicstir3/Conceptual_Questions/001 Ball Path when Dropped by Horizontally Moving Cyclist.problem Remove /res/msu/kortemey/physicslib/momentum/soyuziss.problem Remove /res/msu/physicslib/msuphysicslib/16_Momentum/msu-probl1.problem Remove /res/msu/kortemey/physicslib/momentum/superman.problem Remove /res/msu/kortemey/physicslib/msuphysicslib/17_Impulse/msu-probl2.problem Remove /res/msu/kortemey/physicslib/momentum/businelastic.problem Remove /res/msu/plough/physlibrary/momentum/elhs-prob06.problem Remove /res/fsu/GeneralChemLib/Lab/Density/Metals.problem Remove /res/hiou/0Up200lib/sfChpt6/sf0615a.problem Remove

Basket taxonomies:<u>chemistry</u>:<u>introduction</u>:(2708) <u>physics</u>:<u>mechanics</u>:<u>linearmomentum</u>:(1362) Basket Recommendations

/<u>res/msu/plough/physlibrary/momentum/elhs-prob07.problem Add</u> /<u>res/msu/plough/physlibrary/momentum/elhs-prob09.problem Add</u> /<u>res/ohiou/cutnell/Chap07/cj-prob0712.problem Add</u>

Languages


LON-CAPA Content Display Settings				
CON-CAPA Content Di	splay Settings			
🗲 🖳 msu.edu https	://s3.lite. msu.edu /adm/preferences?action=changelanguages			
James Thomas Laver	ty (No Role, Cumulative Privileges)			
Main Menu				
Menu » Set User Pref	erences » Change Language			
Preferred language:	No language preference			
Save	No language preference			
ourc	Arabic - UTF			
	German - UTF			
	English - UTF			
	Spanish (Castellan) - UTF			
	Persian - UTF			
	French - UTF			
	Hebrew - UTF			
	Japanese - UTF			
Portuguese - UTF Russian - UTF				
	Swedish Chef - UTF			
	Chinese Simplified - UTF			

 Typesetting: LaTeX can be embedded anywhere in the material

The solution is
$$x_{1,2}\!=\!-\tfrac{p}{2}\!\pm\!\sqrt{\left(\tfrac{p}{2}\right)^2\!-\!q}$$

٦

Editor for non-native LaTeX speakers

 Generated on-the-fly, can vary from student to student.

	Script	Delete?			
	\$k=&random	(2,5,1)			
Inse	ert:	+			
	Text Block	Delete?			
	<u>Rich format</u>	ting »			
	What is the derivative of <m eval="on">\[\frac{1}{\$k}x^\$k\]</m> with respect to <m>\$x\$</m> ?				

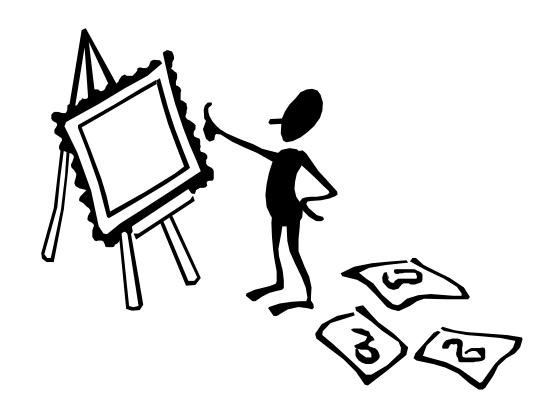
What is the derivative of with respect to x ?	$\frac{1}{3}x^{3}$
What is the derivative of	$\frac{1}{5}x^{5}$
with respect to x ?	$\overline{s}^{x^{y}}$

- <algebra>-tag to pretty-print the output from computer algebra systems
- Example: \$formula="a*x^5"

Text Block	Delete?	Edit Math 🕜				
<u>Rich formatting</u> What is the d		ebra>\$formula with respect to x?				
What is the derivative of $a x^5$ with respect to x?						

- One-source, multiple target
- Looks good in print
 - Online:

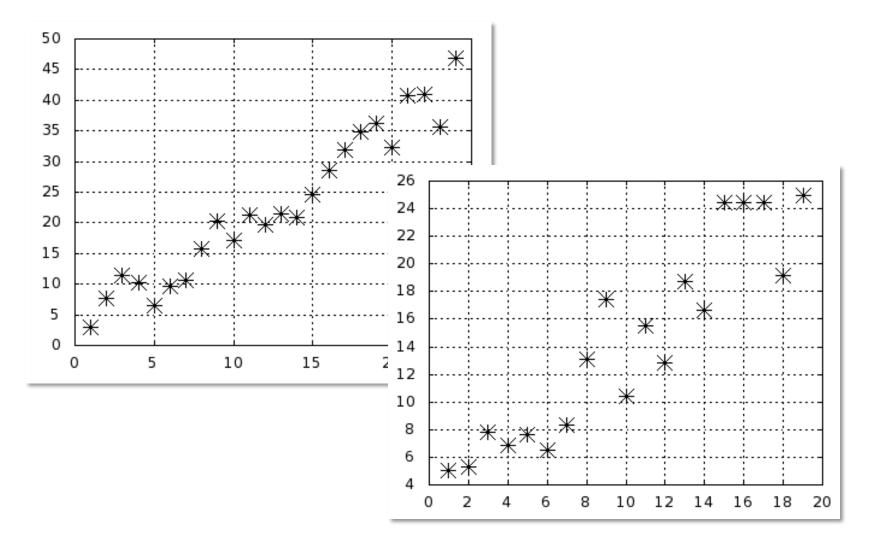
The solution is

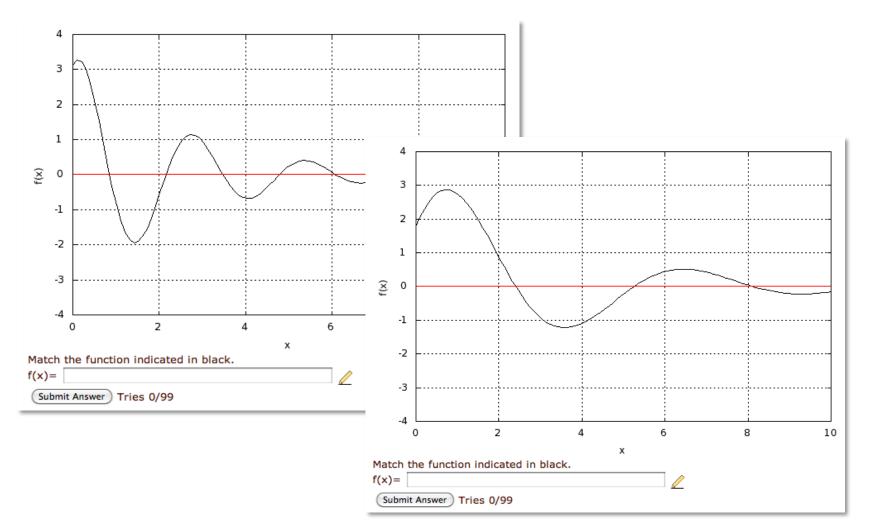

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Print (dynamically generated PDF):

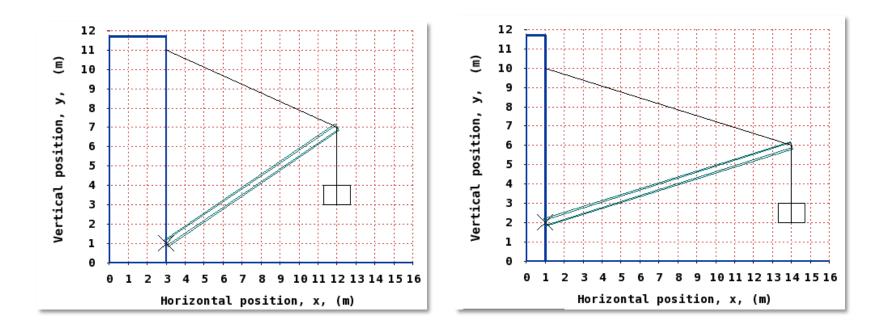
The solution is

$$x_{1,2}=-rac{p}{2}\pm\sqrt{\left(rac{p}{2}
ight)^2-q}$$


- Dynamic Graphing
 - Data-Points
 - Functions
 - Line-Graphics
- Internally uses GNUplot


Data points

alc	a pu	11115			Curve Delete?
	-				Color of curve (x000000) x000000
50		!	!	!	Name of curve to appear in key
45					Plot with: points 🔷
40			<u>.</u>		Line width (may not apply to all plot styles) 1 🔷
35					Line type (may not apply to all plot styles) solid
30			<u>.</u>	<u> </u>	
25				Ж	Point size (may not apply to all plot styles) 2
		v	***	₩	Point to fill for filledcurves closed 🗘
20		*			
15			<u>^</u>		Comma or space deliminated curve data
10	*** *	****			 @x
5		¥			
0	*				Insert:
C)	5 1	LO	15	
					Comma or space deliminated curve data
					@y
					Insert:


Data points

Functions

Line graphics

Generating Wathematics Problems

- LON-CAPA problems include
 - Perl Scripting Environment
 - MAXIMA Computer Algebra System
 - R Statistics Package
- Problems not just randomized, but randomly generated with desired properties

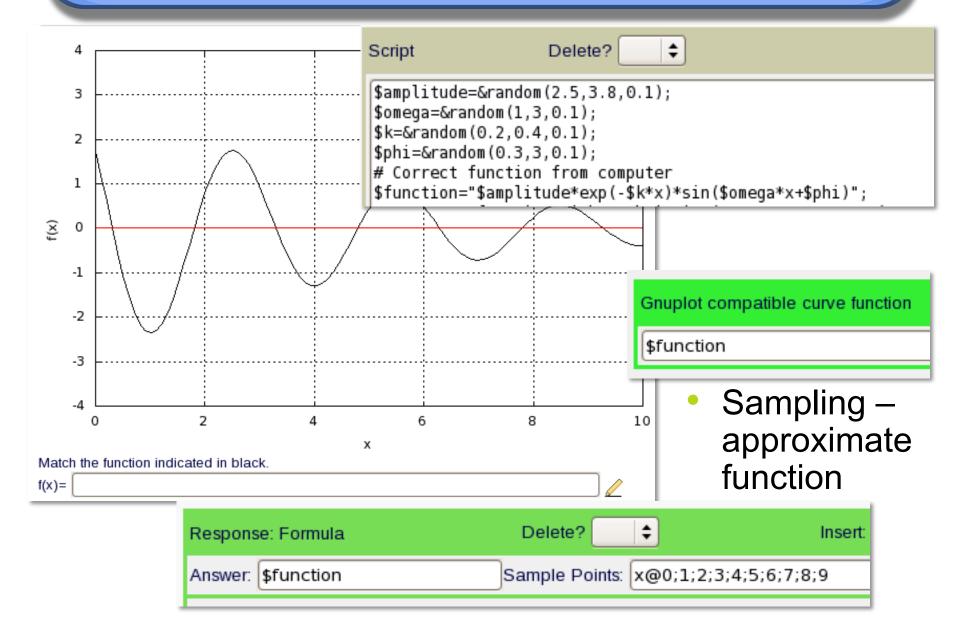
Generating Wathematics Problems

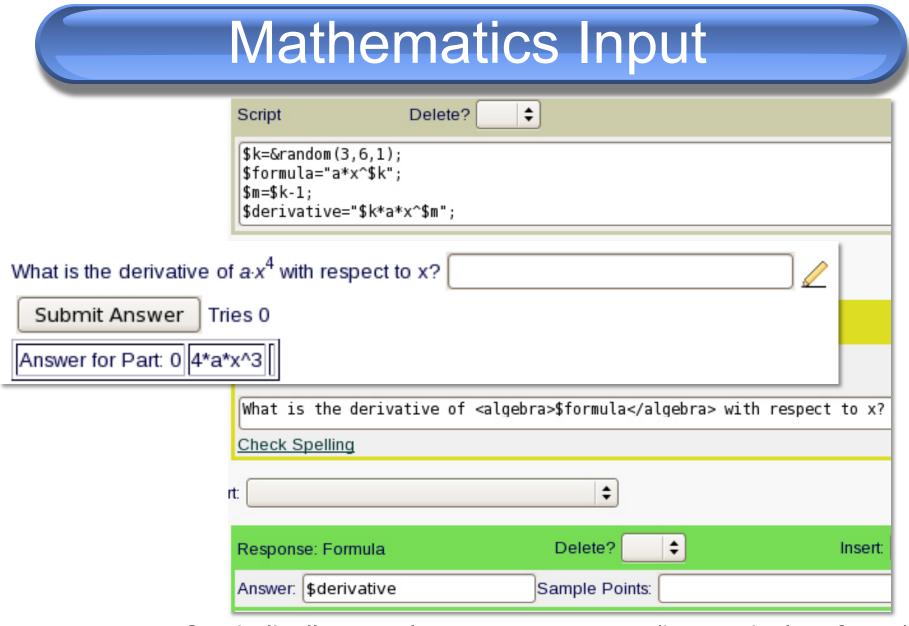
- Direct calls to MAXIMA: \$result=&cas('maxima',\$expression);
- Simple example: use computer algebra system to calculate a reduced

Script

Delete?

Construct an Egyptian Fraction that can be represented by three terms with denominators between 3 and 12 @denominators=(&random_permutation(&random(1,1000,1),(3..12)))[0..2]; \$egyptian='1/'.(join('+1/',sort{\$a<=>\$b}(@denominators))); \$possible="A possible solution is \$egyptian";

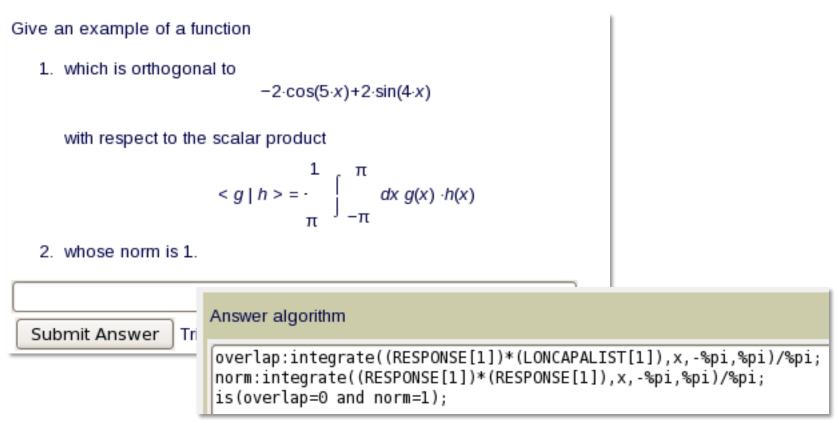

<pre># Let the CAS figure out the value \$solution=&cas('maxima',\$egyptian);</pre>	Write 103/165 as an Egyptian Fraction	
	Submit Answer Tries 0	
	Answer for Part: 0 A possible solution is 1/3+1/5+1/11	


Generating Wathematics Problems

- Direct calls to R: \$result=&cas('R',\$expression); \$results=&cas_hashref('R',\$expression);
- Example: generate a distribution with certain properties:

cript Delete?
seed=&random(1,500,1);
n=&random(15,25,1);
offset=&random(2,5,0.1);
slope=&random(0.6,2.5,0.1);
construct a data set using R
dump is for debugging, print to screen to see data structure
<pre>\$data,\$dump)=&cas_hashref('R',"set.seed(\$seed);x<-1:\$n;w<-1+sqrt(x)/2;data.frame(x=x,y=\$offset+\$slope*x+rnorm(x)*w);");</pre>
x=&cas_hashref_array(\$data,'x');
y=&cas_hashref_array(\$data,'y');

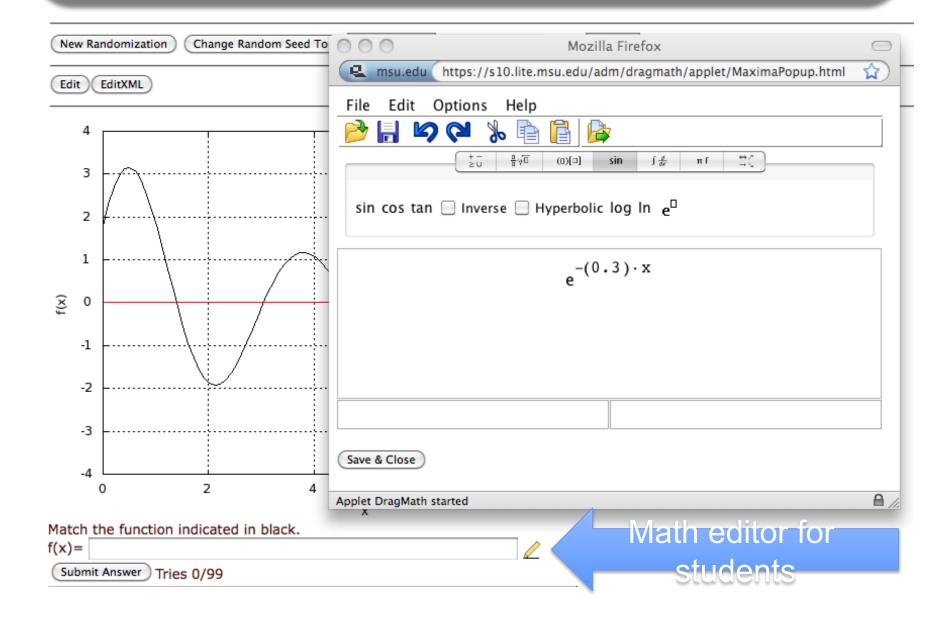
	Script Delete?		
	<pre>\$vx=&random(3,6,0.1); \$vy=&random(2,8,0.1); \$vz=&random(4,10,0.1); \$t=&random(4,9,1);</pre>	An object starts at the origin with a constan	nt velocity of
	<pre>@solution=(\$vx*\$t,\$vy*\$t,\$vz*\$t);</pre>		→ (4.4) m
Inser			v = 2.5 -
	Text Block Delete? 🗲 Ed	Where is it 4 seconds later? 17.6,10,28.8	(^{7.2})
	Rich formatting » An object starts at the origin with a co	nstant volocity of	
	<pre>An object starts at the origin with a co <m eval="on"> \[\vec{v}=\left(\begin{array}{c}\$vx\\ \$v \frac{\mbox{m}}{\mbox{s}}\] </m> Where is it \$t seconds later?</pre>		 Simplest input:
	Check Spelling		numerica
Inser		\$	
Res	oonse: Numerical Delete?	s Insert:	
Ans	ver: @solution Incorrect Ans	wers: OUnit: m	

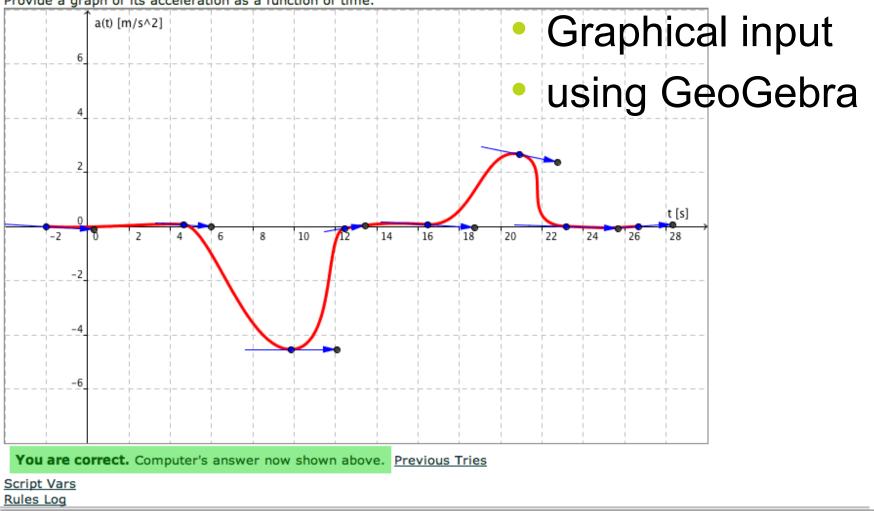

• Symbolically: exactly one exact answer (but equivalent forms)

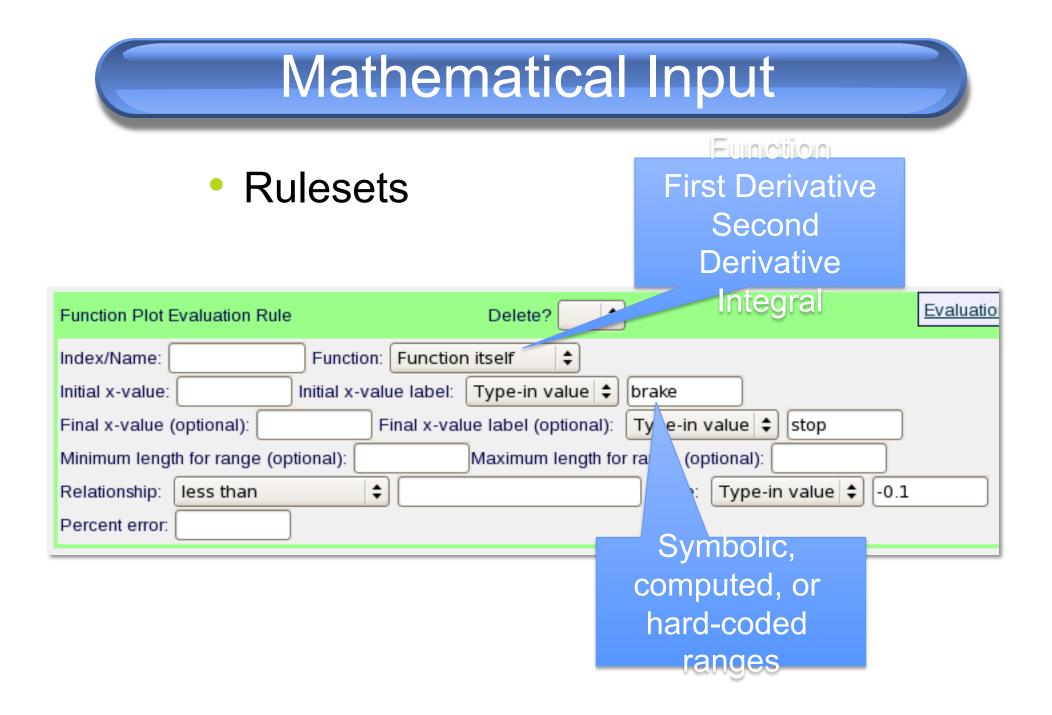
Checking properties Using R:

Provide a list of 3 numbers (separated by commas) that has a mean value of 6.2.

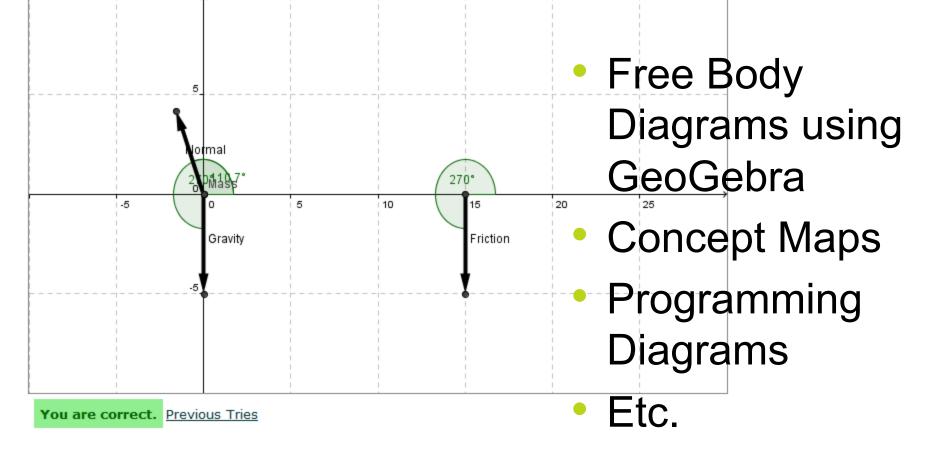
Resp	onse: Math	Delete?	Insert:	(♦)		
-	String to display for answer: \$answer Algebra System: R						
	Answer algorithm			Delete?	\		
	x<-c(RESPONSE[1], abs(mean(x)-LONCA	RESPONSE[2],RESP APALIST[1])<0.001	DNSE[3]);				


Checking properties Using MAXIMA:


Checking properties Using Perl and MAXIMA


Write 9/20 as an Egyptian Fraction

```
# Subroutine that checks if the provided term is indeed an Egyptian Fraction
sub analyze {
    my ($expression)=@ ;
    $expression=~s/\s//qs;
    $expression=~s/\+?1\//\,/qs;
     if ($expression=~/^(\,[0-9]+)+$/) {
# Format is indeed 1/n+1/m+...
        $last=-1:
        foreach $number (sort { $a<=>$b } split(/\,/,$expression)) {
# Is a number used twice?
             if ($last==$number) { return(0,1); }
             $last=$number;
                                                                                     $
                                  Answer algorithm
                                                                        Delete?
          return(0,0);
     }
                                   # Analyze the format
     return(1,0);
                                   ($formaterror,$doubleerror)=&analyze($submission);
                                   if ($formaterror || $doubleerror) { return 'WRONG FORMAT'; }
                                   # It is an Egyptian Fraction, is the value correct?
                                   if (&cas('maxima',$submission.'-('.$eqyptian.')') eq '0') {
                                       return 'EXACT_ANS';
                                   return 'INCORRECT';
```



At t=0 s, a car cruises at a constant positive velocity. Suddenly, a light switches to red. At t=10 s, the driver is maximum on the brake. The car then stops in front of the red light for over 2 seconds. Eventually, it drives off, and then again cruises at a constant velocity. The car cannot accelerate with more than 3 m/s^2 . Provide a graph of its acceleration as a function of time.

• (This will be in the next version of LON-CAPA)

A mass sits on a frictionless ramp which makes an angle with the ground of 20 degrees. Make a free-body diagram for this mass.

Rules

Function Plot Rule Se	t Delete? - Insert:	Eunction Plot Rules	
Function Plot Vector	Rule	Delete?	Vector Rule 🕡
Index/Name: g1 Attached to object: Tail attached to obje Length: Angle: 270 Insert:		Tail not attached to object: Tip not attached t	o object:
		What the object is (or is not)	
	Specify Length and Direction of a Vector	attached to.	

Thank You

- Now it's time to play with it!
- http://relate.mit.edu/physicscourse