
Using Genetic Algorithms for Data Mining
Optimization in an Educational Web-based System

Behrouz Minaei-Bidgoli1, William F. Punch III 1

1 Genetic Algorithms Research and Applications Group (GARAGe)
Department of Computer Science & Engineering

Michigan State University
2340 Engineering Building

East Lansing, MI 48824
{minaeibi, punch}@cse.msu.edu
http://garage.cse.msu.edu

Abstract. This paper presents an approach for classifying students in order to
predict their final grade based on features extracted from logged data in an edu-
cation web-based system. A combination of multiple classifiers leads to a sig-
nificant improvement in classification performance. Through weighting the fea-
ture vectors using a Genetic Algorithm we can optimize the prediction accuracy
and get a marked improvement over raw classification. It further shows that
when the number of features is few; feature weighting is works better than just
feature selection.

1 Statement of problem

Many leading educational institutions are working to establish an online teaching
and learning presence. Several systems with different capabilities and approaches
have been developed to deliver online education in an academic setting. In particular,
Michigan State University (MSU) has pioneered some of these systems to provide an
infrastructure for online instruction. The research presented here was performed on a
part of the latest online educational system developed at MSU, the Learning Online
Network with Computer-Assisted Personalized Approach (LON-CAPA).

In LON-CAPA1, we are involved with two kinds of large data sets: 1) educational

resources such as web pages, demonstrations, simulations, and individualized prob-
lems designed for use on homework assignments, quizzes, and examinations; and 2)
information about users who create, modify, assess, or use these resources. In other
words, we have two ever-growing pools of data.

We have been studying data mining methods for extracting useful knowledge from

these large databases of students using online educational resources and their re-

1 See http://www.lon-capa.org

corded paths through the web of educational resources. In this study, we aim to an-
swer the following two research questions:
1) Can we find classes of students? In other words, do there exist groups of students

who use these online resources in a similar way? If so, can we identify that class
for any individual student? With this information, can we help a student use the
resources better, based on the usage of the resource by other students in their
groups?

2) Can we classify the problems that have been used by students? If so, can we
show how different types of problems impact students’ achievements? Can we
help instructors to develop the homework more effectively and efficiently?

We hope to find similar patterns of use in the data gathered from LON-CAPA, and

eventually be able to make predictions as to the most-beneficial course of studies for
each learner based on their present usage. The system could then make suggestions to
the learner as to how to best proceed.

2 Map the problem to Genetic Algorithm

Genetic Algorithms have been shown to be an effective tool to use in data mining
and pattern recognition. [7], [10], [6], [16], [15], [13], [4]. An important aspect of GAs
in a learning context is their use in pattern recognition. There are two different ap-
proaches to applying GA in pattern recognition:

1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [3] applied GA

to find the decision boundary in N dimensional feature space.

2. Use a GA as an optimization tool for resetting the parameters in other classifiers.
Most applications of GAs in pattern recognition optimize some parameters in the
classification process. Many researchers have used GAs in feature selection [2],
[9], [21], [12], [18]. GAs has been applied to find an optimal set of feature weights
that improve classification accuracy. First, a traditional feature extraction method
such as Principal Component Analysis (PCA) is applied, and then a classifier such
as k-NN is used to calculate the fitness function for GA [17], [19]. Combination of
classifiers is another area that GAs have been used to optimize. Kuncheva and Jain
in [11] used a GA for selecting the features as well as selecting the types of indi-
vidual classifiers in their design of a Classifier Fusion System. GA is also used in
selecting the prototypes in the case-based classification [20].

In this paper we will focus on the second approach and use a GA to optimize a

combination of classifiers. Our objective is to predict the students’ final grades based
on their web-use features, which are extracted from the homework data. We design,
implement, and evaluate a series of pattern classifiers with various parameters in
order to compare their performance on a dataset from LON-CAPA. Error rates for the
individual classifiers, their combination and the GA optimized combination are pre-
sented.

2.1 Dataset and Class Labels

As test data we selected the student and course data of a LON-CAPA course,
PHY183 (Physics for Scientists and Engineers I), which was held at MSU in spring
semester 2002. This course integrated 12 homework sets including 184 problems, all
of which are online. About 261 students used LON-CAPA for this course. Some of
students dropped the course after doing a couple of homework sets, so they do not
have any final grades. After removing those students, there remained 227 valid sam-
ples. The grade distribution of the students is shown in Fig 1.

Fig. 1. Graph of distribution of grades in course PHY183 SS02

0 10 20 30 40 50 60

of students

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
ra

d
e

Grade Distribution

We can group the students regarding their final grades in several ways, 3 of which
are:
1. Let the 9 possible class labels be the same as students’ grades, as shown in table

1
2. We can label the students in relation to their grades and group them into three

classes, “high” representing grades from 3.5 to 4.0, “middle” representing grades
from 2.5 to 3, and “low” representing grades less than 2.5.

3. We can also categorize the students with one of two class labels: “Passed” for
grades higher than 2.0, and ”Failed” for grades less than or equal to 2.0, as
shown in table 3.

Table 1. Selecting 9 class labels regarding to students’ grades in course PHY183 SS02

1 Grade = 0.0 2 0.9%
2 Grade = 0.5 0 0.0%
3 Grade = 1.0 10 4.4%
4 Grade = 1.5 28 12.4%
5 Grade = 2.0 23 10.1%
6 Grade = 2.5 43 18.9%
7 Grade = 3.0 52 22.9%
8 Grade = 3.5 41 18.0%
9 Grade = 4.0 28 12.4%

Table 2. Selecting 3 class labels regarding to students’ grades in course PHY183 SS02

High Grade >= 3.5 69 30.40%
Middle 2.0 < Grade < 3.5 95 41.80%

Low Grade <= 2.0 63 27.80%

Table 2. selecting 2 class labels regarding to students’ grades in course PHY183 SS02

We can predict that the error rate in the first class grouping should be higher than

the others, because the distributions of the grades over 9 classes are so different. It is
clear that we have less data for the first three classes in the training phase, and so the
error rate would likely be higher in the evaluation phase.

2.2 Extractable Features

An essential step in doing classification is selecting the features used for classifica-
tion. Below we discuss the features from LON-CAPA that were used, how they can
be visualized (to help in selection) and why we normalize the data before classifica-
tion.

The following features are stored by the LON-CAPA system:
1. Total number of correct answers. (Success rate)
2. Getting the problem right on the first try, vs. those with high number of tries.

(Success at the first try)
3. Total number of tries for doing homework. (Number of attempts before correct

answer is derived)
4. Time spent on the problem until solved (more specifically, the number of hours

until correct. The difference between time of the last successful submission and
the first time the problem was examined). Also, the time at which the student got
the problem correct relative to the due date. Usually better students get the home-
work completed earlier.

5. Total time spent on the problem regardless of whether they got the correct answer
or not. (Difference between time of the last submission and the first time the prob-
lem was examined).

6. Participating in the communication mechanisms, vs. those working alone. LON-
CAPA provides online interaction both with other students and with the instructor.
Where these used?

7. Reading the supporting material before attempting homework vs. attempting the
homework first and then reading up on it.

8. Submitting a lot of attempts in a short amount of time without looking up material
in between, versus those giving it one try, reading up, submitting another one, and
so forth.

9. Giving up on a problem versus students who continued trying up to the deadline.
10. Time of the first log on (beginning of assignment, middle of the week, last min-

ute) correlated with the number of tries or number of solved problems. A student

Passed Grade > 2.0 164 72.2%
Failed Grade <= 2.0 63 27.8%

who gets all correct answers will not necessarily be in the successful group if they
took an average of 5 tries per problem, but it should be verified from this research.
At this time we were able to extract the first six features in the PHY183 SS02 data-

set that we have chosen for the classification experiment.

2.3 Classifiers

Pattern recognition has a wide variety of applications in many different fields, such
that it is not possible to come up with a single classifier that can give good results in
all the cases. The optimal classifier in every case is highly dependent on the problem
domain. In practice, one might come across a case where no single classifier can
classify with an acceptable level of accuracy. In such cases it would be better to pool
the results of different classifiers to achieve the optimal accuracy. Every classifier
operates well on different aspects of the training or test feature vector. As a result,
assuming appropriate conditions, combining multiple classifiers may improve classi-
fication performance when compared with any single classifier.

The scope of this survey is restricted to comparing some popular non-parametric
pattern classifiers and a single parametric pattern classifier according to the error
estimate. Six different classifiers using the LON-CAPA datasets are compared in this
study. The classifiers used in this study include Quadratic Bayesian classifier, 1-
nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window, multi-layer
perceptron (MLP), and Decision Tree.2 These classifiers are some of the common
classifiers used in most practical classification problems. After some preprocessing
operations were made on the dataset, the error rate of each classifier is reported. Fi-
nally, to improve performance, a combination of classifiers is presented.

2.4 Normalization

Having assumed in Bayesian and Parzen-window classifiers that the features are
normally distributed, it is necessary that the data for each feature be normalized. This
ensures that each feature has the same weight in the decision process. Assuming that

the given data is Gaussian distributed, this normalization is performed using the mean
and standard deviation of the training data. In order to normalize the training data, it
is necessary first to calculate the sample meanµ , and the standard deviation σ of
each feature, or column, in this dataset, and then normalize the data using the equa-

tion(1).
σ
µ−

= i
i

xx (1)

This ensures that each feature of the training dataset has a normal distribution with
a mean of zero and a standard deviation of one. In addition, the kNN method requires
normalization of all features into the same range. However, we should be cautious in
using the normalization before considering its effect on classifiers’ performances.

2 The first five classifiers are coded in MATLABTM 6.0, and for the decision tree classifiers we have

used some available software packages such as C5.0, CART, QUEST, and CRUISE.

2.5 Combination of Multiple Classifiers (CMC)

In combining multiple classifiers we want to improve classifier performance. There
are different ways one can think of combining classifiers:
• The simplest way is to find the overall error rate of the classifiers and choose the

one which has the least error rate on the given dataset. This is called an offline
CMC. This may not really seem to be a CMC; however, in general, it has a better
performance than individual classifiers.

• The second method, which is called online CMC, uses all the classifiers followed
by a vote. The class getting the maximum votes from the individual classifiers
will be assigned to the test sample. This method intuitively seems to be better
than the previous one. However, when tried on some cases of our dataset, the re-
sults were not better than the best result in previous method. So, we changed the
rule of majority vote from “getting more than 50% votes” to “getting more than
75% votes”. This resulted in a significant improvement over offline CMC.

Using the second method, we show in table 4 that CMC can achieve a significant

accuracy improvement in all three cases of 2, 3, and 9-classes. Now we are going to
use GA to find out that whether we can maximize the CMC performance.

3 Optimizing the CMC Using a GA

We used GAToolBox3 for MATLAB to implement a GA to optimize classification
performance. Our goal is to find a population of best weights for every feature vector,
which minimize the classification error rate.

The feature vector for our predictors are the set of six variables for every student:

Success rate, Success at the first try, Number of attempts before correct answer is
derived, the time at which the student got the problem correct relative to the due date,
total time spent on the problem, and the number of online interactions of the student
both with other students and with the instructor.

We randomly initialized a population of six dimensional weight vectors with val-

ues between 0 and 1, corresponding to the feature vector and experimented with dif-
ferent number of population sizes. We found good results using a population with
200 individuals. The GA Toolbox supports binary, integer, real-valued and floating-
point chromosome representations. Real-valued populations may be initialized using
the Toolbox function crtrp. For example, to create a random population of 6 indi-
viduals with 200 variables each: we define boundaries on the variables in FieldD
which is a matrix containing the boundaries of each variable of an individual.

FieldD = [0 0 0 0 0 0; % lower bound
 1 1 1 1 1 1]; % upper bound

3 Downloaded from http://www.shef.ac.uk/~gaipp/ga-toolbox/

We create an initial population with Chrom = crtrp(200, FieldD), So we have
for example:

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26
 0.35 0.09 0.43 0.64 0.20 0.54
 0.50 0.10 0.09 0.65 0.68 0.46
 0.21 0.29 0.89 0.48 0.63 0.89

………………

We used the simple genetic algorithm (SGA), which is described by Goldberg in
[9]. The SGA uses common GA operators to find a population of solutions which
optimize the fitness values.

3.1 Recombination

We used “Stochastic Universal Sampling” [1] as our selection method. A form of
stochastic universal sampling is implemented by obtaining a cumulative sum of the
fitness vector, FitnV, and generating N equally spaced numbers between 0 and
sum(FitnV). Thus, only one random number is generated, all the others used being
equally spaced from that point. The index of the individuals selected is determined by
comparing the generated numbers with the cumulative sum vector. The probability of
an individual being selected is then given by

where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual
being selected.

3.2 Crossover

The crossover operation is not necessarily performed on all strings in the population.
Instead, it is applied with a probability Px when the pairs are chosen for breeding. We
selected Px = 0.7. There are several functions to make crossover on real-valued ma-
trices. One of them is recint, which performs intermediate recombination between
pairs of individuals in the current population, OldChrom, and returns a new popula-
tion after mating, NewChrom. Each row of OldChrom corresponds to one individual.
recint is a function only applicable to populations of real-value variables. Intermedi-
ate recombination combines parent values using the following formula [14]:

Offspring = parent1 + Alpha × (parent2 – parent1)

Alpha is a Scaling factor chosen uniformly in the interval [-0.25, 1.25]

3.3 Mutation

A further genetic operator, mutation is applied to the new chromosomes, with a set
probability Pm. Mutation causes the individual genetic representation to be changed
according to some probabilistic rule. Mutation is generally considered to be a back-

∑
=

=
indN

i
i

i
i

xf

xf
xF

1

)(

)(
)((2)

ground operator that ensures that the probability of searching a particular subspace of
the problem space is never zero. This has the effect of tending to inhibit the possibil-
ity of converging to a local optimum, rather than the global optimum.

There are several functions to make mutation on real-valued population. We used

mutbga, which takes the real-valued population, OldChrom, mutates each variable
with given probability and returns the population after mutation, NewChrom = mut-
bga(OldChrom, FieldD, MutOpt) takes the current population, stored in the matrix
OldChrom and mutates each variable with probability by addition of small random
values (size of the mutation step). We considered 1/600 as our mutation rate. The
mutation of each variable is calculated as follows:

Mutated Var = Var + MutMx × range × MutOpt(2) × delta

where delta is an internal matrix which specifies the normalized mutation step
size; MutMx is an internal mask table; and MutOpt specifies the mutation rate and
its shrinkage during the run. The mutation operator mutbga is able to generate most
points in the hypercube defined by the variables of the individual and the range of the
mutation. However, it tests more often near the variable, that is, the probability of
small step sizes is greater than that of larger step sizes.

3.4 Fitness Function

During the reproduction phase, each individual is assigned a fitness value derived
from its raw performance measure given by the objective function. This value is used
in the selection to bias towards more fit individuals. Highly fit individuals, relative to
the whole population, have a high probability of being selected for mating whereas
less fit individuals have a correspondingly low probability of being selected. The
error rate is measured in each round of cross validation by dividing “the total number
of misclassified examples” into “total number of test examples”. Therefore, our fit-
ness function measures the error rate achieved by CMC and our objective would be to
maximize this performance (minimize the error rate).

4 Experiment Results

Without using GA, the overall results of classifiers’ performance on our dataset, re-
garding the four tree-classifiers, five non-tree classifiers and CMC are shown in the
Table 4. Regarding individual classifiers, for the case of 2-classes, kNN has the best
performance with 82.3% accuracy. In the case of 3-classes and 9-classes, CART has
the best accuracy of about 60% in 3-classes and 43% in 9-Classes. However, consid-
ering the combination of non-tree-based classifiers, the CMC has the best perform-
ance in all three cases. That is, it achieved 86.8% accuracy in the case of 2-Classes,
71% in the case of 3-Classes, and 51% in the case of 9-Classes.

Table 4. Comparing the Error Rate of all classifiers on PHY183 dataset in the cases of 2-
Classes, 3-Classess, and 9-Classes, using 10-fold cross validation, without GA

 Performance %

Classifier 2-Classes 3-Classes 9-Classes
C5.0 80.3 56.8 25.6
CART 81.5 59.9 33.1
QUEST 80.5 57.1 20.0

Tree Classi-
fier

CRUISE 81.0 54.9 22.9
Bayes 76.4 48.6 23.0
1NN 76.8 50.5 29.0
kNN 82.3 50.4 28.5
Parzen 75.0 48.1 21.5
MLP 79.5 50.9 -

Non-tree
Classifier

CMC 86.8 70.9 51.0

For GA optimization, we used 200 individuals in our population, running the GA

over 500 generations. We ran the program 10 times and got the averages, which are
shown, in table 5. In every run 500×200 times the fitness function is called in which
we used 10-fold cross validation to measure the average performance of CMC. So
every classifier is called 3 ×106 times for the case of 2-classes, 3-classes and 9-
classes. Thus, the time overhead for fitness evaluation is critical. Since using the MLP
in this process took about 2 minutes and all other four non-tree classifiers (Bayes,
1NN, 3NN, and Parzen window) took only 3 seconds, we omitted the MLP from our
classifiers group so we could obtain the results in a reasonable time.

Table 5. Comparing the CMC Performance on PHY183 dataset Using GA and without GA in
the cases of 2-Classes, 3-Classess, and 9-Classes, 95% confidence interval.

 Performance %

Classifier 2-Classes 3-Classes 9-Classes

CMC of 4 Classifiers without GA 83.87± 1.73 61.86± 2.16 49.74± 1.86

GA Optimized CMC, Mean individual 94.09± 2.84 72.13± 0.39 62.25± 0.63

Improvement 10.22± 1.92 10.26± 1.84 12.51± 1.75

The results in Table 5 represent the mean performance with a two-tailed t-test with
a 95% confidence interval. For the improvement of GA over non-GA result, a P-
value indicating the probability of the Null-Hypothesis (There is no improvement) is
also given, showing the significance of the GA optimization. All have p<0.000, indi-
cating significant improvement. Therefore, using GA, in all the cases, we got more
than a 10% mean individual performance improvement and about 12 to 15% mean
individual performance improvement. Fig. 2 shows the graph of average mean indi-
vidual performance improvement.

Fig. 2. Chart of comparing CMC average performance, using GA and without GA.

0

10

20

30

40

50

60

70

80

90

100

2-Classes 3-Classes 9-Classes

Students' Classes

C
M

C
 P

er
fo

rm
an

ce

CMC Performance without GA GA Optimized CMC

Fig. 3 shows the best result of the ten runs over our dataset. These charts represent
the population mean, the best individual at each generation and the best value yielded
by the run.

Fig. 3. Graph of GA Optimized CMC performance in the case of 2, 3, and 9-Classes

Finally, we can examine the individuals (weights) for features by which we obtained
the improved results. This feature weighting indicates the importance of each feature
for making the required classification. In most cases the results are similar to Multiple
Linear Regressions or tree-based software that use statistical methods to measure
feature importance.

 Table 6 shows the importance of the six features in the 3-classes case using the En-
tropy splitting criterion. Based on entropy, a statistical property called information
gain measures how well a given feature separates the training examples in relation to
their target classes. Entropy characterizes impurity of an arbitrary collection of ex-
amples S at a specific node N. In [5] the impurity of a node N is denoted by i(N) such
that:

Entropy(S) =)(log)()(2 j
j

j PPNi ωω∑−= (3)

where)(jPω is the fraction of examples at node N that go to category jω .

Table 6. Feature Importance in 3-Classes Using Entropy Criterion

Feature Importance %
Total_Correct _Answers 100.00
Total_Number_of_Tries 58.61
First_Got_Correct 27.70
Time_Spent_to_Solve 24.60
Total_Time_Spent 24.47
Communication 9.21

The GA results also show that the “Total number of correct answers” and the “To-
tal number of tries” are the most important features for the classification. The second
column in table 6 shows the percentage of feature importance.

5 Conclusions and Future Work

Four classifiers were used to segregate the students. A combination of multiple classi-
fiers leads to a significant accuracy improvement in all 3 cases. Weighing the fea-
tures and using a genetic algorithm to minimize the error rate improves the prediction
accuracy at least 10% in the all cases of 2, 3 and 9-Classes. In cases where the num-
ber of features is low, the feature weighting worked much better than feature selec-
tion. The successful optimization of student classification in all three cases demon-
strates the merits of using the LON-CAPA data to predict the students’ final grades
based on their features, which are extracted from the homework data.

We are going to apply Genetic Programming to produce many different combina-
tions of features, to extract new features and improve prediction accuracy. We plan to
use Evolutionary Algorithms to classify the students and problems directly as well.
We also want to apply Evolutionary Algorithms to find Association Rules and De-
pendency among the groups of problems (Mathematical, Optional Response, Numeri-
cal, Java Applet, and so forth) of LON-CAPA homework data sets.

Acknowledgements

This work was partially supported by the National Science Foundation under ITR
0085921, with additional support by the Andrew W. Mellon and Alfred P. Sloan
foundations.

References

1. Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm, Proceeding
ICGA 2, pp. 14-21, Lawrence Erlbuam Associates, Publishers, 1987.

2. Bala J., De Jong K., Huang J., Vafaie H., and Wechsler H. Using learning to facilitate the
evolution of features for recognizing visual concepts. Evolutionary Computation 4(3) - Spe-
cial Issue on Evolution, Learning, and Instinct: 100 years of the Baldwin Effect. 1997.

3. Bandyopadhyay, S., and Muthy, C.A. “Pattern Classification Using Genetic Algorithms”,
Pattern Recognition Letters, (1995).Vol. 16, pp. 801-808.

4. De Jong K.A., Spears W.M. and Gordon D.F. (1993). Using genetic algorithms for concept
learning. Machine Learning 13, 161-188, 1993.

5. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. 2nd Edition, John Wiley &
Sons, Inc., New York NY. (2001).

6. Falkenauer E. Genetic Algorithms and Grouping Problems. John Wiley & Sons, (1998).
7. Freitas, A.A. A survey of Evolutionary Algorithms for Data Mining and Knowledge Discov-

ery,See: www.pgia.pucpr.br/~alex/papers. A chapter of: A. Ghosh and S. Tsutsui. (Eds.)
“Advances in Evolutionary Computation”. Springer-Verlag, (2002).

8. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, MA,
Addison-Wesley. (1989).

9. Guerra-Salcedo C. and Whitley D. “Feature Selection mechanisms for ensemble creation: a
genetic search perspective”. In: Freitas AA (Ed.) Data Mining with Evolutionary Algo-
rithms: Research Directions – Papers from the AAAI Workshop, 13-17. Technical Report
WS-99-06. AAAI Press, (1999).

10. Jain, A. K.; Zongker, D. “Feature Selection: Evaluation, Application, and Small Sample
Performance”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 19,
No. 2, February (1997).

11. Kuncheva , L.I., and Jain, L.C., “Designing Classifier Fusion Systems by Genetic Algo-
rithms”, IEEE Transaction on Evolutionary Computation, Vol. 33 (2000), pp 351-373.

12. Martin-Bautista MJ and Vila MA. A survey of genetic feature selection in mining issues.
Proceeding Congress on Evolutionary Computation (CEC-99), 1314-1321. Washington
D.C., July (1999).

13. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. 3rd Ed.
Springer-Verlag, (1996).

14. Muhlenbein and Schlierkamp-Voosen D., Predictive Models for the Breeder Genetic Algo-
rithm: I. Continuous Parameter Optimization, Evolutionary Computation, (1993) Vol. 1, No.
1, pp. 25-49.

15. Park Y and Song M. A genetic algorithm for clustering problems. Genetic Programming
1998: Proceeding of 3rd Annual Conference, 568-575. Morgan Kaufmann, (1998).

16. Pei, M., Goodman, E.D., and Punch, W.F. "Pattern Discovery from Data Using Genetic
Algorithms", Proceeding of 1st Pacific-Asia Conference Knowledge Discovery & Data Min-
ing (PAKDD-97). Feb. (1997).

17. Pei, M., Punch, W.F., and Goodman, E.D. "Feature Extraction Using Genetic Algorithms",
Proceeding of International Symposium on Intelligent Data Engineering and Learning’98
(IDEAL’98), Hong Kong, Oct. (1998).

18. Punch, W.F., Pei, M., Chia-Shun, L., Goodman, E.D., Hovland, P., and Enbody R. "Further
research on Feature Selection and Classification Using Genetic Algorithms", In 5th Interna-
tional Conference on Genetic Algorithm , Champaign IL, pp 557-564, (1993).

19. Siedlecki, W., Sklansky J., A note on genetic algorithms for large-scale feature selection,
Pattern Recognition Letters, Vol. 10, Page 335-347, (1989).

20. Skalak D. B. (1994). Using a Genetic Algorithm to Learn Prototypes for Case Retrieval an
Classification. Proceeding of the AAAI-93 Case-Based Reasoning Workshop, pp. 64-69.
Washigton, D.C., American Association for Artificial Intelligence, Menlo Park, CA, 1994.

21. Vafaie H and De Jong K. “Robust feature Selection algorithms”. Proceeding 1993 IEEE Int.
Conf on Tools with AI, 356-363. Boston, Mass., USA. Nov. (1993).

